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Abstract

This article addresses the steady three-dimensional flow of an Oldroyd-B nanofluid over a bidirectional stretching surface
with heat generation/absorption effects. Suitable similarity transformations are employed to reduce the governing partial
differential equations into coupled nonlinear ordinary differential equations. These nonlinear ordinary differential equations
are then solved analytically by using the homotpy analysis method (HAM). Graphically results are presented and discussed
for various parameters, namely, Deborah numbers b1 and b2, heat generation/absorption parameter l, Prandtl parameter
Pr, Brownian motion parametersNb, thermophoresis parameter Nt and Lewis number Le. We have seen that the increasing
values of the Brownian motion parameter Nt and thermophoresis parameter Nt leads to an increase in the temperature
field and thermal boundary layer thickness while the opposite behavior is observed for concentration field and
concentration boundary layer thickness. To see the validity of the present work, the numerical results are compared with the
analytical solutions obtained by Homotopy analysis method and noted an excellent agreement for the limiting cases.
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Introduction

During the past few years, study of the boundary layer flow of

nanofluids over a linear stretching surface has become more and

more attractive because of its numerous applications in industrial

manufacturing. With regard to the sundry application of

nanofluids, the researchers have been given considerable attention

to improve heat transfer using nanofluids. Regular fluids, such as

ethylene, water, glycol mixture and some types of oil have low heat

transfer rates. Therefore it is necessary to improve some physical

properties such as thermal conductivity and heat transfer rate of

conventional fluids by the utilization of nanoparticles in base fluid.

The term nanofluid was first time introduced by Choi [1]. In

another paper, Choi et al. [2] observed that thermal conductivity

of pure fluid can be increased by a factor of 2 with an addition of

one percent by volume fraction of the nanoparticle.

Sakiadis [3] was the first who investigated the boundary layer

flow on a continuous stretching surface. In his paper, he provided

numerical solutions of the boundary layer flow over a continuous

stretching surface. Later on Crane [4] analyzed the exact solution

of boundary layer flow of Newtonian fluid due to stretching of an

elastic sheet moving linearly in its own plane. Wang [5]

investigated the free convection on a vertical stretching surface.

Heat transfer analysis over an exponentially stretching continuous

surface was analyzed by Elbashbeshy [6]. Rana and Kango [7]

discussed the effect of rotation on thermal instability of compress-

ible Walters’ (model) elastico-viscous fluid in porous medium. Heat

transfer over a stretching surface with variable heat flux in

micropolar fluids was presented by Ishak et al. [8]. Chamkha and

Aly [9] examined MHD free convective boundary layer flow of a

nanofluid along a permeable isothermal vertical plate in the

presence of heat source or sink. Thermosolutal convection in

Walters’ (Model B’) elastico-viscous rotating fluid permeated with

suspended particles and variable gravity field in porous medium in

hydromagnetics was investigated by Rana [10]. Matin et al. [11]

presented the MHD mixed convective flow of a nanofluid over a

stretching sheet. Chand and and Rana [12] examined the

oscillating convection of nanofluid in porous medium. Aziz and

Khan [13] studied natural convective flow of a nanofluid over a

convectively heated vertical plate. Kuznetsov and Nield [14]

analyzed the natural convective flow of a nanofluid past a vertical

plate. Khan and Pop [15,16] investigated the laminar flow of

nanofluids past a stretching sheet. Hamad et al. [17] formulated

the problem of free convective flow of nanofluid past a semi-

infinite vertical plate with influence of magnetic field. Hady et al.

[18] investigated the effects of thermal radiation on the viscous

flow of a nanofluid and heat transfer over a non-linear sheet.

Makinde and Aziz [19] performed the numerical study of

boundary layer over a linear stretching sheet. Cheng [20] analyzed

the behavior of boundary layer flow over a horizontal cylinder of

elliptic cross section in a porous. Narayana and Sibanda [21]

elaborated the effects of laminar flow of a nanofluid over an

unsteady stretching sheet. Kameswaran et al. [22] investigated

flow due to a stretching or shrinking sheet with viscous dissipation

and chemical reaction effects. The effects of an unsteady

boundary-layer flow and heat transfer of a nanofluid over a
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porous stretching/shrinking sheet have been investigated by

Bachok et al. [23]. Hamad and Ferdows [24] presented the

similarity solutions for viscous flow and heat transfer of a nanofluid

over a non-linear stretching sheet. The studies on heat generation/

absorption effects for boundary layer flow of nanofluids are very

limited. Recently, Alsaedi et al. [25] investigated the effects of heat

generation/absorption on stagnation point flow of nanofluid over

a surface with convective boundary conditions. Thermal instability

of Rivlin-Ericksen Elastico-Viscous nanofluid saturated by a

porous medium were presented by Chand and Rana [26]. On

the onset of thermal convection in rotating nanofluid layer

saturating a Darcy-Brinkman porous medium were studied by

Chand and Rana [27]. Nandy and Mahapatra [28] examined the

effects of slip and heat generation/absorption on MHD stagnation

point flow of nanofluid past a stretching/shrinking surface with

convective boundary conditions. On the onset of thermosolutal

instability in a layer of an Elastico-Viscous nanofluid in porous

medium was investigated by Rana et al. [29].

However, to the best of author’s knowledge, no attempts have

thus far been communicated with regards to free convective

boundary layer flow of three-dimensional Oldroyd-B nanofluid

over a stretching surface. The aim of the present article is to study

the free convective boundary-layer flow of three-dimensional

Oldroyd-B nanofluid fluid flow over a stretching sheet. The

Oldroyd-B fluid model was employed to describe rheological

behavior of viscoelastic nanofluid. The Oldroyd-B fluid model is

important because of its applications in the production of plastic

sheet and extrusion of polymers through through a slit die in

polymer industry. The considered stretched flow problem involves

problem involves the significant heat transfer between the sheet

and the surrounding fluid. The extrudate in this mechanism starts

to solidify as soon as it exits from the die and then sheet is collected

by a wind-up roll upon solidification. Physical properties of the

cooling medium, e.g., its thermal conductivity has pivotal role in

such process. The success of whole operation closely depends upon

the viscoelastic character of fluid above the sheet. By applying

boundary layer approximations a system of nonlinear partial

differential equations is obtained. Then, invoking suitable similar-

ity transformations, we reduced the system into nonlinear ordinary

differential equations. This system of coupled nonlinear ordinary

differential equations is then solved analytically by using the

homotpoy analysis method (HAM). The variations of different

flow controlling parameters on the velocity, temperature and

concentration profiles are addressed.

Mathematical Formulation

Consider a steady three-dimensional (x, y, z) free convective

boundary layer flow of an incompressible Oldroyd-B nanofluid

over a stretching sheet kept at a constant temperature Tw and

concentration Cw. The ambient temperature and concentration

far away from the sheet are taken as T? and C?, respectively.

The flow is due to a bidirectional stretched surface at z~0. The

governing equations for the steady three-dimensional flow of an

Oldroyd-B nanofluid, approximated by boundary-layer theory,

are [30]
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Here (u, v, w) are velocity components, T the temperature, C

the concentration, l1 and l2 the relaxation and retardation times

respectively, r the fluid density, a the thermal diffusivity, Q0 the

heat generation/absorption parameter, t the ratio of effective heat

capacity of the nanoparticle material to the heat capacity of the

fluid, DB the Brownian diffusion coefficient and DT the

thermophoresis diffusion coefficient.

Equations (1) to (5) are subjected to the following boundary

conditions

u~ax, v~by, w~0, T~Tw, C~Cw at z~0, ð6Þ

Oldroyd-B Nanofluid
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u?0, v?0, T?T?, C?C? as z??: ð7Þ

The similarity variables are introduced as

u x, yð Þ~axf ’ gð Þ, v x, yð Þ~ayg’(g), w~{
ffiffiffiffiffi
an
p

f (g)zg(g)½ �

h gð Þ~ T{T?

Tw{T?
, w gð Þ~ C{C?

Cw{C?
, g~z

ffiffiffi
a

n

r
,

ð8Þ

and Eqs.(1)–(7) can be cast as

f 000z(f zg)f 00{f ’2zb1 2(f zg)f 0f 00{(f zg)2f 000
� �

z

b2 2(f 00zg00)f 00{(f zg)f iv
� �

~0,
ð9Þ

g000z(f zg)g00{g’2zb1 2(f zg)g0g00{(f zg)2g000
� �

z

b2 2(f 00zg00)g00{(f zg)giv
� �

~0,
ð10Þ

h’’z Pr (f zg)h’z Pr Nbw’h’z Pr Nth
’2z Pr lh~0, ð11Þ

Table 1. Convergence of the homotopy solutions when b1~b2~0:2, b~0:4, Pr ~1:2, Nb~Nt~0:1 and Le~1 are fixed.

Order of approximation 2f 99(0) 2g99(0) 2h9(0) 2Q9(0)

1 1.00420 0.337840 0.622000 0.352000

5 1.02196 0.328912 0.549080 0.493576

10 1.02155 0.328848 0.549423 0.489147

15 1.02154 0.328870 0.549446 0.488882

20 1.02154 0.328869 0.549438 0.488934

26 1.02154 0.328869 0.549438 0.488939

30 1.02154 0.328869 0.549438 0.488939

35 1.02154 0.328869 0.549438 0.488939

doi:10.1371/journal.pone.0105107.t001

Figure 1. Variation of b1 on h(g) when b2~0:2, b~0:4, Pr ~0:4, l~0:2, Nb~Nt~0:1 and Le~1:0 are fixed.
doi:10.1371/journal.pone.0105107.g001
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Figure 2. Variation of b2 on h(g) when b1~0:2, b~0:4, Pr ~0:4, l~0:2, Nb~Nt~0:1 and Le~1:0 are fixed.
doi:10.1371/journal.pone.0105107.g002

Figure 3. Variation of b on h(g) when b1~b2~0:2, b~0:4, Pr ~1:2, l~0:2, Nb~Nt~0:1 and Le~1:0 are fixed.
doi:10.1371/journal.pone.0105107.g003
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Figure 4. Variation of Pr on h(g) when b1~b2~0:2, b~0:2, l~0:2, Nb~Nt~0:1 and Le~1:0 are fixed.
doi:10.1371/journal.pone.0105107.g004

Figure 5. Variation of l on h(g) when b1~b2~0:2, b~0:4, Pr ~1:2, Nb~Nt~0:1 and Le~1:0 are fixed.
doi:10.1371/journal.pone.0105107.g005
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Figure 6. Variation of l on h(g) when b1~b2~0:2, b~0:4, Pr ~1:2, Nb~Nt~0:1 and Le~1:0 are fixed.
doi:10.1371/journal.pone.0105107.g006

Figure 7. Variation of Nb on h(g) when b1~b2~0:2, b~0:4, Pr ~1:2, l~0:2, Nt~0:1 and Le~1:0 are fixed.
doi:10.1371/journal.pone.0105107.g007
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Figure 8. Variation of Nt on h(g) when b1~b2~0:2, b~0:4, Pr ~1:2, l~0:2, Nb~0:1 and Le~1:0 are fixed.
doi:10.1371/journal.pone.0105107.g008

Figure 9. Variation of b1 on q(g) when b2~0:2, b~0:4, Pr ~1:2, l~0:2, Nb~Nt~0:1 and Le~1:0 are fixed.
doi:10.1371/journal.pone.0105107.g009
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Figure 10. Variation of b2 on q(g) when b1~0:2, b~0:4, Pr ~1:2, l~0:2, Nb~Nt~0:1 and Le~1:0 are fixed.
doi:10.1371/journal.pone.0105107.g010

Figure 11. Variation of l on q(g) when b1~b2~0:2, b~0:4, Pr ~1:2, Nb~Nt~0:1 and Le~1:0 are fixed.
doi:10.1371/journal.pone.0105107.g011
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Figure 12. Variation of Le on q(g) when b1~b2~0:2, b~0:4, Pr ~1:2, l~0:2, Nb~0:1, and Nt~0:1 are fixed.
doi:10.1371/journal.pone.0105107.g012

Figure 13. Variation of Nb on q(g) when b1~b2~0:2, b~0:4, Pr ~1:2, l~0:2, Nt~0:1 and Le~1:0 are fixed.
doi:10.1371/journal.pone.0105107.g013
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w’’z Pr
L

e(f zg)w’z
Nt

Nb

h’’~0, ð12Þ

f ~0, g~0, f ’~1, g’~b, h~1, q~1 at g~0, ð13Þ

f ’?0, g’?0, h?0, w?0 as g??, ð14Þ

where prime denotes differentiation with respect to g. Moreover,

b1 and b2 are the Deborah numbers, b the ratio of stretching rates

parameter, Pr the generalized Prandtl number, l the heat source

(lw0) and the heat sink (lv0) parameter, Nb the local Brownian

motion parameter, Nt the local thermophoresis parameter and Le

the Lewis number which are defined as

Figure 14. Variation of Nt on q(g) when b1~b2~0:2, b~0:4, Pr ~1:2, l~0:2, Nb~0:1 and Le~1:0 are fixed.
doi:10.1371/journal.pone.0105107.g014

Table 2. A comparison for the velocity gradients for different values of b when b1~b2~0 are fixed.

b HPM result [31] HPM result [31] Exact result [31] Exact result [31] Present result Present result

2f99(0) 2g99(0) 2f99(0) 2g99(0) 2f99(0) 2g99(0)

0.0 1.0 0.0 1.0 0.0 1.0 0.0

0.1 1.02025 0.06684 1.020259 0.066847 1.02026 0.06685

0.2 1.03949 0.14873 1.039495 0.148736 1.03949 0.14874

0.3 1.05795 0.24335 1.05794 0.243359 1.05795 0.24336

0.4 1.07578 0.34920 1.075788 0.349208 1.07578 0.34921

0.5 1.09309 0.46520 1.093095 0.465204 1.09309 0.46521

0.6 1.10994 0.59052 1.109946 0.590528 1.10994 0.59053

0.7 1.12639 0.72453 1.126397 0.724531 1.12639 0.72453

0.8 1.14248 0.86668 1.142488 0.866682 1.14249 0.86668

0.9 1.15825 1.01653 1.158253 1.016538 1.15826 1.016538

1.0 1.17372 1.17372 1.173720 1.173720 1.17372 1.17372

doi:10.1371/journal.pone.0105107.t002
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The physical quantities of interest are the local Nusselt number

Nux and the local Sherwood number Shx, which are defined as

Nux~{
x

T{T?ð Þ
LT
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� �����
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, ð16Þ
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In terms of dimensionless form one has

Re{
1

2Nux~{h0 0ð Þ, Re{
1

2Shx~{w0 0ð Þ, ð18Þ

where Re~ux=n is the local Reynolds number.

Convergence of the Homotopy Solutions

The problems containing non-linear coupled ordinary differen-

tial equations (19)–(12) subjected to boundary conditions (13)–(14)

have been computed analytically by the homotopy analysis

method (HAM). In the HAM role of the auxiliary parameters h-f,

h-g, h-h, and h-Q is of key importance because they control the

convergence of the series solution. The most suitable value of these

auxiliary parameters is calculated by considering minimum square

error which is given by

Ff , m~
1

Nz1

XN

j~0

Nf

Xm

i~0

FJ iDgð Þ
" #2

: ð19Þ

Table 1 ensure the convergence of the series solution which

shows that the convergent solution for the velocity is obtained at

20th-order of approximation whereas such a convergence for

temperature and concentration is achieved at 26th-order of

approximation.

Numerical Results and Discussion

The aim of this section is to analyze the influence of the various

physical parameters on the velocity, temperature and nanoparticle

fields respectively. Figs. 1–14 are plotted to see the variation of the

Deborah numbers b1 and b2, Prandtl number Pr, heat source

(lw0) or sink (lv0) parameter, Brownian motion parameter Nb

and thermophoresis parameter Nt on the fluid temperature and

concentration fields.

Fig. 1 shows the influence of the Deborah number b1 on the

temperature field. By increasing Deborah number b1 both the

fluid temperature and thermal boundary layer thickness increases.

This is due to fact that the Deborah number b1 involves relaxation

time l1. An increase in the relaxation time leads to increase in the

temperature and boundary layer thickness. Fig. 2 illustrates the

effects of the Deborah number b2 on the temperature field. From

this figure, it is noted that the behavior of the Deborah number b2

is opposite to that of b1. This is due to fact that the retardation

time provides resistance which causes a reduction in the

temperature and thermal boundary layer thickness. Fig. 3 presents

the effects of the stretching parameter b on the fluid temperature

h(g). We observed that the temperature and thermal boundary

layer thickness reduce with the increasing b. Fig. 4 illustrates the

influence of the Prandtl number Pr on the temperature field. We

Table 3. Comparision of results for the local Nusselt number 2h’(0) in the absence of non-Newtonian parameters and
nanoparicles when b~0 with the work of Khan and Pop [15] and Nadeem and Hussain [32]

Pr Present result Khan and Pop [15] Nadeem and Hussain [32]

0.07 0.066 0.066 0.066

0.20 0.169 0.169 0.169

0.70 0.454 0.454 0.454

2.0 0.911 0.911 0.911

doi:10.1371/journal.pone.0105107.t003

Table 4. Comparision of results for the local Nusselt number 2h’(0) and local Sherwood number 2w’(0) in the presence of
nanoparticle of when b~0, b1~b2~0:3, l~0, Pr ~6 and Le~1 are fixed with the work of Nadeem et al. [33].

Nt Nb
Present result Present result Nadeem et al. [33] Nadeem et al. [33]

2h9(0) Q9(0) 2h9(0) Q9(0)

0.3 0.3 0.33984 1.83994 0.33988 1.83935

0.5 0.3 0.24088 1.95813 0.24099 1.95862

0.3 0.5 0.14814 1.87029 0.14820 1.87035

0.5 0.5 0.10478 1.94565 0.10486 1.94572

doi:10.1371/journal.pone.0105107.t004
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observed that the temperature and thermal boundary layer

thickness are reduced for large Prandtl number. Since thermal

diffusivity is an agent which plays a key role for lower or higher

temperature. Hence resulting larger value of the Prandtl number

corresponds to diminishing of the thermal diffusivity resulting in a

temperature decrease. Figs. 5 and 6 are plotted to analyze the

effects of the heat source parameter ( when lw0) and heat sink

parameter ( when lv0), respectively. It is observed that

temperature of the fluid increases with the increase in the heat

source parameter and an opposite behavior is observed for heat

sink parameter. The influence of the Brownian motion parameter

Nb and thermophoresis parameter Nt on the temperature is

depicted through Figs. 7 and 8, respectively. It is observed that the

temperature and thermal boundary layer thickness increases as the

Brownian motion parameter Nb increases. Physically, this is due to

the fact that with an increase of the Brownian motion parameter

Nb the random motion of particle increases which results in an

enhancement in the temperature profile. The temperature and

thermal boundary layer thickness are detected to increase with an

increase in thermophoresis parameter Nt (Fig. 8). In fact with the

increase of the thermophoresis parameter Nt the difference

between the wall temperature and reference temperature increases

which causes increase in temperature profile.

In Figs. 9 and 10, we plotted the concentration profile for

various values of the Deborah numbers b1 and b2, respectively. As

the Deborah numbers b1 increases, the concentration profile as

well as concentration boundary layer thickness increase. However,

the effects of b2 on the concentration profile are quite opposite to

that of b1. Fig. 11 shows the influence of the heat generation

parameter l on the concentration profile. A decrease in the

concentration profile and concentration boundary layer thickness

near the plate is noted while the reverse effect is reported far away

from the plate with the increasing value of the heat generation

parameter l. Fig. 12 illustrates the influence of the Lewis number

Le on the concentration profile w(g). It is noted that the

concentration profile increases by increasing the Lewis number

Le as Lewis number is inversely proportional to the diffusion

coefficient. Thus an increase in Lewis number yields a decrease in

diffusion which finally results in a decrease of mass fraction

function q(g). The variations with g of the concentration profile

for different values of the Brownian motion parameter Nb and

thermophoresis parameter Nt are presented in Figs. 13 and 14,

respectively. In Fig. 13, it is observed that concentration profile

increases with the increasing of the Brownian motion parameter

Nb. This is due to the dependency of the concentration on the

temperature field and we expect that a lower Brownian motion

parameter allow a deeper penetration of the concentration. On the

other hand, a qualitatively opposite trend in the concentration

profile is observed as the thermophoresis parameter Nt increases.

Further, it is noticed that the thermophoresis parameter Nt affects

the concentration profile more than Brownian motion parameter

Nb does.

Numerical values for the velocity gradients {f ’’(0) and {g’’(0)
are compared with the existing literature in the absence of both

nanoparticles and non-Newtonian effects and shown in table 2,

where they are found to be in excellent agreement, cementing the

validity of the present results. Table 3 gives comparison of local

Nusselt number 2h’(0) with the results obtained by Khan and Pop

[15] and Nadeem and Hussain [32] Table 4 provides comparison

of local Nusselt number 2h’(0) and local Sherwood number 2

q’(0) for different values of the Brownian motion parameter Nb

and the thermophoresis parameter Nt with existing results

obtained by Nadeem etal.[33]. Table 5 is prepared for the

variation of the local Nusselt number (heat transfer rate) and the

local Sherwood number (concentration rate) for different values of

the involved parameters. It is reported that the local Nusselt

number 2h’(0) increases when b and Pr increase whereas it

decreases as l, Nb, Nt and Le increase. It is evident from table 5

that the local Sherwood number 2w’(0) increases with the

increase of the parameters b, Pr , l, Nb and Le, however, it

decreases with the increase of Nt.

Concluding Remarks

This study has analyzed the effects of the heat generation/

absorption on three-dimensional flow of an Oldroyed-B nanofluid

over a bidirectional stretching sheet. From the present investiga-

tion, the main observations were as follows:

N Qualitatively, effects of the Deborah numbers b1 and b2 on the

temperature and concentration profiles were similar.

N The temperature profile as well as thermal boundary layer

thickness were increased by increasing both the Brownian

motion parameter Nb and thermophoresis parameter Nt.

N The temperature of the fluid and thermal boundary layer

thickness is enhanced when there is a increase in the heat

generation parameter l.

N The concentration profile was decreased with the increase of

the Brownian motion parameter Nb and a quite opposite

behavior was noted with increasing thermophoresis parameter

Nt.

N It was noted that the thermophoresis parameter Nt affected the

concentration profile more than the Brownian motion

parameter Nb did.

N An increase in the heat generation parameter when lw0ð Þ
corresponds to reduction in the values of the local Nusselt

number 2h’(0) while the opposite behavior is observed for the

local Sherwood number 2w’(0).

N The magnitude of the local the local Nusselt number 2h’(0)
decreases with the increase of the Brownian motion parameter

Nb.

N The magnitude of the local the local Sherwood number 2w’(0)
increase with the increase of the Brownian motion parameter

Nb.
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